Assessing tungsten transport in the vadose zone: from dissolution studies to soil columns.
نویسندگان
چکیده
This study investigates the dissolution, sorption, leachability, and plant uptake of tungsten and alloying metals from canister round munitions in the presence of model, well characterized soils. The source of tungsten was canister round munitions, composed mainly of tungsten (95%) with iron and nickel making up the remaining fraction. Three soils were chosen for the lysimeter studies while four model soils were selected for the adsorption studies. Lysimeter soils were representatives of the typical range of soils across the continental USA; muck-peat, clay-loamy and sandy-quartzose soil. Adsorption equilibrium data on the four model soils were modeled with Langmuir and linear isotherms and the model parameters were obtained. The adsorption affinity of soils for tungsten follows the order: Pahokee peat>kaolinite>montmorillonite>illite. A canister round munition dissolution study was also performed. After 24 d, the measured dissolved concentrations were: 61.97, 3.56, 15.83 mg L(-1) for tungsten, iron and nickel, respectively. Lysimeter transport studies show muck peat and sandy quartzose soils having higher tungsten concentration, up to 150 mg kg(-1) in the upper layers of the lysimeters and a sharp decline with depth suggesting strong retardation processes along the soil profile. The concentrations of tungsten, iron and nickel in soil lysimeter effluents were very low in terms of posing any environmental concern; although no regulatory limits have been established for tungsten in natural waters. The substantial uptake of tungsten and nickel by ryegrass after 120 d of exposure to soils containing canister round munition suggests the possibility of tungsten and nickel entering the food chain.
منابع مشابه
Risk assessment of industrial hydrocarbon release and transport in the vadose zone as it travels to groundwater table: A case study
In this paper, a modeling tool for risk assessment analysis of the movement of hydrocarbon contaminants in the vadose zone and mass flux of contamination release into the groundwater table was developed. Also, advection-diffusion-reaction equations in combination with a three-phase equilibrium state between trapped air, soil humidity, and solid particles of unsaturated soil matrix were numerica...
متن کاملEffects of Remediation Amendments on Vadose Zone Microorganisms
Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring m...
متن کاملERDC TR-11-1, Tungsten Speciation in Firing Range Soils
Synchrotron-based X-ray absorption spectroscopy (XAS) of select surface soil samples obtained from Camp Edwards, Massachusetts, small arms ranges indicate that little tungsten metal remains in the soil and that is not stable in the natural environment. X-ray absorption near edge structure (XANES) studies indicate rapid oxidation of tungsten metal to form tungsten oxides W(VI), polytungstates, t...
متن کاملColloids and Colloid-Facilitated Transport of Contaminants in Soils: An Introduction
as a third phase, thus enhancing the transport of strongly sorbing contaminants (McCarthy and Zachara, 1989). Until some two decades ago, it was believed that only the soil liquid and gaseous phases were mobile and could facilitate the transport of chemicals and nutrients through the vadose zone. It is now generally SOURCES OF MOBILE SOIL COLLOIDS accepted that also part of the soil solid phase...
متن کاملCoupled Geochemical and Hydrological Processes Governing the Fate and Transport of Radionuclides and Toxic Metals Beneath the Hanford Tank Farms
s and Presentations: Jardine, P.M. 1999. Fate and Transport of Radionuclides Beneath the Hanford Tank-Farms: Unraveling Coupled Geochemical and Hydrological Processes in the Vadose Zone. Workshop on Hanford Tank Farm Needs, Environmental Management Science Program, Pacific Northwest National Laboratory. October, 1999, Richland, WA. Jardine, P.M., S.C. Brooks, S.E. Fendorf, C.C. Ainsworth, and B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 86 10 شماره
صفحات -
تاریخ انتشار 2012